Welcome Guest.

3Answers

Matlab uses five conventional operators to perform edge detection on an image, which is the best

Asked by: Ward 230 views IT July 3, 2018

Matlab uses five conventional operators to perform edge detection on an image, which is the best

3 Answers

  1. +8Votes  

    close all

    clear all

    I=imread(‘tig.jpg’); %Read Image

    I1=im2double (I); % turns the color map sequence into double precision

    I2=rgb2gray(I1); % turns the color map into a gray map

    [thr,&nbsp ;sorh, keepapp]=ddencmp(‘den’,’wv’,I2);

    I3=wdencmp(‘gbl’,I2,’sym4′,2,thr,sorh,keepapp) ; %Wave Denoising

    I4=medfilt2(I3,[9 9]); % Median Filtering

    I5=imresize(I4,0.2,’bicubic ‘); % image size

    BW1=edge(I5,’sobel’); %sobel image edge extraction

    BW2=edge(I5,’roberts’) ; %robertsImage Edge Extraction

    BW3=edge(I5,’prewitt’); %prewittImage Edge Extraction

    BW4=edge(I5,’log’) ; %log image edge extraction

    BW5=edge(I5,’canny’); %canny image edge extraction

    h=fspecial(‘gaussian’,5) ; %Gaussian filtering

    BW6=edge(I5,’zerocross’,[ ],h); %zerocross image edge extraction

    figure;

    subplot(1,3,1); % is divided into three lines, the first picture

    imshow(I2); %Drawing

    figure;

    subplot(1,3,1);

    imshow(BW1);

    title(‘Sobel operator’);

    subplot(1 ,3,2);

    imshow(BW2);

    title(‘Roberts operator’);

    subplot(1,3,3);

    imshow(BW3);

    title(‘Prewitt operator’);

     

    George Martin- July 4, 2018 |

  2. +5Votes  

    lose all< /p>

    clear all

    I=imread(‘tig.jpg’); %read images

    I1=im2double(I); % Turn a colormap sequence into double-precision

    I2=rgb2gray(I1); %Turn a colormap into a gray one

    [thr, sorh, keepapp] =ddencmp(‘den’,’wv’,I2);

    I3=wdencmp(‘gbl’,I2,’sym4′,2,thr,sorh,keepapp); %Wavelet denoising

    I4=medfilt2(I3,[9 9]); % Median Filter

    I5=imresize(I4,0.2,’bicubic’); %Image Size

    BW1=edge(I5,’sobel’); %sobel image edge extraction

    BW2=edge(I5,’roberts’); %roberts image edge Extraction

    BW3=edge(I5,’prewitt’); %prewitt image edge extraction

    BW4=edge(I5,’log’); %log image edge Extract

    BW5=edge(I5,’canny’); %canny image edge extraction

    h=fspecial(‘gaussian’,5);&nbsp ;% Gaussian filtering

    BW6=edge(I5,’zerocross’,[ ],h); %zerocross image edge extraction

    figure;

    < p>subplot(1,3,1); % is divided into three lines, the first picture

    imshow(I2); %Drawing

    figure ;

    subplot(1,3,1);

    imshow(BW1);

    title(‘Sobel operator’);

    < p>subplot(1,3,2);

    imshow(BW2);

    title(‘Roberts operator’);

    subplot(1, 3,3);

    imshow(BW3);

    title(‘Prewitt operator’);

    Matthew Clarke- July 5, 2018 |

  3. +7Votes  

    im =imread(‘h1.jpg’);I=rgb2gray(im); bw1=edge(I,’sobel’); bw2=edge(I,’roberts’);  bw3=edge(I,’canny’ );  bw4=edge(I,’prewitt’);     figure(2),subplot(2,2,1);imshow(bw4);title(‘prewitt operator renderings’); subplot (2,2,2);imshow(bw1);title(‘sobel operator renderings’);  subplot(2,2,3);imshow(bw2);title(‘roberts operator renderings’) ; subplot(2,2,4);imshow(bw3);title(‘canny operator renderings’);

    Wood- July 5, 2018 |